5(x-1)=4(3x+12)11x

Simple and best practice solution for 5(x-1)=4(3x+12)11x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(x-1)=4(3x+12)11x equation:



5(x-1)=4(3x+12)11x
We move all terms to the left:
5(x-1)-(4(3x+12)11x)=0
We multiply parentheses
5x-(4(3x+12)11x)-5=0
We calculate terms in parentheses: -(4(3x+12)11x), so:
4(3x+12)11x
We multiply parentheses
132x^2+528x
Back to the equation:
-(132x^2+528x)
We get rid of parentheses
-132x^2+5x-528x-5=0
We add all the numbers together, and all the variables
-132x^2-523x-5=0
a = -132; b = -523; c = -5;
Δ = b2-4ac
Δ = -5232-4·(-132)·(-5)
Δ = 270889
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-523)-\sqrt{270889}}{2*-132}=\frac{523-\sqrt{270889}}{-264} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-523)+\sqrt{270889}}{2*-132}=\frac{523+\sqrt{270889}}{-264} $

See similar equations:

| 16n^2-3n=4+4n^2+5n | | 7n^2-14n=245 | | 6–8h=5h+19 | | -57(x+10)(13x-7)=0 | | 5a^2+3a+1=3a^2 | | 7^4x-7^2x-42=0 | | 12x-65=11x-8 | | 5(x-1)-2x=3x+7 | | 2x/3=2.4 | | 45=u÷3 | | -17-4v=19-7v | | -81t=7(-11t-36)-36 | | -3(x+6)+2x=24 | | -8d=-13-9d | | 5=(x-3)+x | | -3(2x-5)+4(3-2x)=-5(2x+3) | | 10w=24+7w | | 5x=134 | | 7=−3x−2−6x* | | 3x-6x-10=-3x+7-10 | | 3(2x=4)=6(5x=2) | | 11x-31=8x-4 | | 8X^3+64=2x+4 | | -7+5x+9=11x+26 | | 4a^2=5 | | 6x-5=5(x-3)=x | | x+3=2x-6=180 | | 31.5=a34.4 | | 5x-3=3x+2x-3 | | 8x+3=8x+3=4.7x-(-2.8x-3.7) | | x+3x-1=5x-x-2 | | 4x+8=2x-12,2x+8=-12 |

Equations solver categories