5(x-1)3x=7(x+1)

Simple and best practice solution for 5(x-1)3x=7(x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(x-1)3x=7(x+1) equation:



5(x-1)3x=7(x+1)
We move all terms to the left:
5(x-1)3x-(7(x+1))=0
We multiply parentheses
15x^2-15x-(7(x+1))=0
We calculate terms in parentheses: -(7(x+1)), so:
7(x+1)
We multiply parentheses
7x+7
Back to the equation:
-(7x+7)
We get rid of parentheses
15x^2-15x-7x-7=0
We add all the numbers together, and all the variables
15x^2-22x-7=0
a = 15; b = -22; c = -7;
Δ = b2-4ac
Δ = -222-4·15·(-7)
Δ = 904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{904}=\sqrt{4*226}=\sqrt{4}*\sqrt{226}=2\sqrt{226}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{226}}{2*15}=\frac{22-2\sqrt{226}}{30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{226}}{2*15}=\frac{22+2\sqrt{226}}{30} $

See similar equations:

| c+11.7=-5.3 | | 2=11-3(x+3)6 | | 5+x-2=12 | | -2(x+)+3x=5x+6 | | (X)=5x+12 | | h/6=10 | | 17+9m=5+3m | | |5+x|-2=12 | | u-11.85=-3.85 | | x=x+2(x+4)=4x-2 | | 5+3(x+4)=2(x+1) | | 5(1+x)=15 | | –5y–10y=45 | | 2y÷3+1=5÷2 | | 3x−1=−15 | | -2(x+3)+2=6 | | -2=6b-8-3b | | 2(y+4)=2(y+5) | | 6n-8n+3=11 | | 17=17h | | 21x+63=30x | | 19x-6=12x+43 | | 7x+4(5-x)=24-3(x-4) | | 7+q=-6.3 | | 2(4x-8)=80 | | 39.2=4.9p | | 5x=14x+48 | | 2y/3+1=5/2 | | 4/3b—11=23 | | x−12=2 | | 4(16x-29)=39(x+6) | | (8y+4)+68+90=180 |

Equations solver categories