If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5(x-1)+5=7+x(1-2x)
We move all terms to the left:
5(x-1)+5-(7+x(1-2x))=0
We add all the numbers together, and all the variables
5(x-1)-(7+x(-2x+1))+5=0
We multiply parentheses
5x-(7+x(-2x+1))-5+5=0
We calculate terms in parentheses: -(7+x(-2x+1)), so:We add all the numbers together, and all the variables
7+x(-2x+1)
determiningTheFunctionDomain x(-2x+1)+7
We multiply parentheses
-2x^2+x+7
Back to the equation:
-(-2x^2+x+7)
-(-2x^2+x+7)+5x=0
We get rid of parentheses
2x^2-x+5x-7=0
We add all the numbers together, and all the variables
2x^2+4x-7=0
a = 2; b = 4; c = -7;
Δ = b2-4ac
Δ = 42-4·2·(-7)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-6\sqrt{2}}{2*2}=\frac{-4-6\sqrt{2}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+6\sqrt{2}}{2*2}=\frac{-4+6\sqrt{2}}{4} $
| 6x-9-2(1-x)=x-9 | | x*1.32*1.4=71 | | ¡(x)=7 | | a+2/5=3 | | 2x/15-x-6/12-3x/20=3/2 | | 3(X-2)/4-x-3=4/4 | | 3x/2-10=11 | | 3(x+2)/4=4 | | 3x12-10=11 | | 5(x-2)+2x=x+32 | | x*1.32*(1.4)=71 | | (7z/4)-(2/3)=(14/6)+(3z/4) | | x^2+1=(7x^2/9)+3 | | Y–3=5x+10 | | x*1.4=100 | | 3(x-4)=4(2x=1) | | x^2+1=7x^2/9+3 | | 4p+5=p-10 | | 2(x+2)+6=62-4x-3-x | | x+(x*0.4)=140 | | x+(x*405)=140 | | 4x-7/6=2/3 | | 0-d=0.33 | | 4/3(1/4x+1/5)=-2/5(1/4x-1) | | 4/3(1/4x+1/5)=-2/5(1/4x-1 | | x/8=x/5−1/3 | | x^2+25x+368=0 | | 5ww=10 | | x^2+27x+360=0 | | 10p+11=12 | | Y=14.373+1.958(x) | | (x+1)(x+2)(x+3)(x+4)+(x-1)(x+6)=0 |