5(x+8)-7x=-(2x-4)12x+21=3(4x+6)

Simple and best practice solution for 5(x+8)-7x=-(2x-4)12x+21=3(4x+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(x+8)-7x=-(2x-4)12x+21=3(4x+6) equation:



5(x+8)-7x=-(2x-4)12x+21=3(4x+6)
We move all terms to the left:
5(x+8)-7x-(-(2x-4)12x+21)=0
We add all the numbers together, and all the variables
-7x+5(x+8)-(-(2x-4)12x+21)=0
We multiply parentheses
-7x+5x-(-(2x-4)12x+21)+40=0
We calculate terms in parentheses: -(-(2x-4)12x+21), so:
-(2x-4)12x+21
We multiply parentheses
-24x^2+48x+21
Back to the equation:
-(-24x^2+48x+21)
We add all the numbers together, and all the variables
-(-24x^2+48x+21)-2x+40=0
We get rid of parentheses
24x^2-48x-2x-21+40=0
We add all the numbers together, and all the variables
24x^2-50x+19=0
a = 24; b = -50; c = +19;
Δ = b2-4ac
Δ = -502-4·24·19
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{676}=26$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-26}{2*24}=\frac{24}{48} =1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+26}{2*24}=\frac{76}{48} =1+7/12 $

See similar equations:

| 28x+7-12=-5+50x-28x | | x/4=39/30 | | 14−2t=6 | | Y-4=-3x-15 | | 10=5x=2+2 | | 4x=4x-43 | | x+2/14=x-3/4 | | -36=x+4x+4 | | -x2+2x-13=0 | | 4(-4x+10)=184 | | 6x-12=7x/5 | | -8-2x=2x-36 | | 4x^2+8=12 | | -3(3x+8)=-114 | | -(x-7+5/3=2(x+9) | | (9x-9)(3x+9)=0 | | 5x-9(x-12)=-3(5x-6)-7x | | r/6=4.2 | | 0.25x+(0.1)(3.5x)=4.40 | | 6x-4(2x-2)=4(x-4) | | 3x–8=-11 | | 9-2/x=5 | | -3(x+5)=4(6+x) | | 4x+8x+6=45 | | v/3-2=5 | | -12(x+4)=-3(x-24) | | y÷7=9 | | 8-x+4x=8 | | 34=y−15(8)y | | 31z-63=621 | | -12(x-4)=3(x-240 | | 27-3x=19 |

Equations solver categories