5(x+4)(x+4)=2(x+1)(x+1)-27

Simple and best practice solution for 5(x+4)(x+4)=2(x+1)(x+1)-27 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(x+4)(x+4)=2(x+1)(x+1)-27 equation:



5(x+4)(x+4)=2(x+1)(x+1)-27
We move all terms to the left:
5(x+4)(x+4)-(2(x+1)(x+1)-27)=0
We multiply parentheses ..
5(+x^2+4x+4x+16)-(2(x+1)(x+1)-27)=0
We calculate terms in parentheses: -(2(x+1)(x+1)-27), so:
2(x+1)(x+1)-27
We multiply parentheses ..
2(+x^2+x+x+1)-27
We multiply parentheses
2x^2+2x+2x+2-27
We add all the numbers together, and all the variables
2x^2+4x-25
Back to the equation:
-(2x^2+4x-25)
We multiply parentheses
5x^2+20x+20x-(2x^2+4x-25)+80=0
We get rid of parentheses
5x^2-2x^2+20x+20x-4x+25+80=0
We add all the numbers together, and all the variables
3x^2+36x+105=0
a = 3; b = 36; c = +105;
Δ = b2-4ac
Δ = 362-4·3·105
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{36}=6$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-6}{2*3}=\frac{-42}{6} =-7 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+6}{2*3}=\frac{-30}{6} =-5 $

See similar equations:

| 2x+3/5=1 | | 14-6x=2-2x-2x | | 3+5-2x+1=4x+3 | | 7(u+6)+8u=27 | | 18g-17g-g+2g-1=20 | | 2y^2-20y-192=0 | | 231=6x-5(-2x-11) | | 5x+11=190 | | 175m-100m+5500=53350-200m | | (u-5)/(u^2-64)=0 | | 7(x-10)(3x+2)=0 | | Y=17x+21 | | 0+6y=4 | | 15z-16z+-z=-4 | | 9=a/4 | | 2q+458=910 | | -4x-35=57 | | n/3-14=1 | | 6-3+4x+1=4x=2 | | -3x+-4=16 | | W^2+4w+14=0 | | 13j-6j-6j=13 | | 4/2x+1=1/2 | | x2-12=-4x | | 5/2x+1=1/2 | | 6-3+4x+1=4x+7 | | x=4+10/11 | | (2)(3x-5)(2x-1)=40 | | -2x+38=72 | | 210x+10=100x+550 | | 15x+15=15x+5 | | -3x+4(3x-2)=-80 |

Equations solver categories