If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 5(v + 1) + -7 = 3(v + -1) * 2v Reorder the terms: 5(1 + v) + -7 = 3(v + -1) * 2v (1 * 5 + v * 5) + -7 = 3(v + -1) * 2v (5 + 5v) + -7 = 3(v + -1) * 2v Reorder the terms: 5 + -7 + 5v = 3(v + -1) * 2v Combine like terms: 5 + -7 = -2 -2 + 5v = 3(v + -1) * 2v Reorder the terms: -2 + 5v = 3(-1 + v) * 2v Reorder the terms for easier multiplication: -2 + 5v = 3 * 2v(-1 + v) Multiply 3 * 2 -2 + 5v = 6v(-1 + v) -2 + 5v = (-1 * 6v + v * 6v) -2 + 5v = (-6v + 6v2) Solving -2 + 5v = -6v + 6v2 Solving for variable 'v'. Combine like terms: 5v + 6v = 11v -2 + 11v + -6v2 = -6v + 6v2 + 6v + -6v2 Reorder the terms: -2 + 11v + -6v2 = -6v + 6v + 6v2 + -6v2 Combine like terms: -6v + 6v = 0 -2 + 11v + -6v2 = 0 + 6v2 + -6v2 -2 + 11v + -6v2 = 6v2 + -6v2 Combine like terms: 6v2 + -6v2 = 0 -2 + 11v + -6v2 = 0 Begin completing the square. Divide all terms by -6 the coefficient of the squared term: Divide each side by '-6'. 0.3333333333 + -1.833333333v + v2 = 0 Move the constant term to the right: Add '-0.3333333333' to each side of the equation. 0.3333333333 + -1.833333333v + -0.3333333333 + v2 = 0 + -0.3333333333 Reorder the terms: 0.3333333333 + -0.3333333333 + -1.833333333v + v2 = 0 + -0.3333333333 Combine like terms: 0.3333333333 + -0.3333333333 = 0.0000000000 0.0000000000 + -1.833333333v + v2 = 0 + -0.3333333333 -1.833333333v + v2 = 0 + -0.3333333333 Combine like terms: 0 + -0.3333333333 = -0.3333333333 -1.833333333v + v2 = -0.3333333333 The v term is -1.833333333v. Take half its coefficient (-0.9166666665). Square it (0.8402777775) and add it to both sides. Add '0.8402777775' to each side of the equation. -1.833333333v + 0.8402777775 + v2 = -0.3333333333 + 0.8402777775 Reorder the terms: 0.8402777775 + -1.833333333v + v2 = -0.3333333333 + 0.8402777775 Combine like terms: -0.3333333333 + 0.8402777775 = 0.5069444442 0.8402777775 + -1.833333333v + v2 = 0.5069444442 Factor a perfect square on the left side: (v + -0.9166666665)(v + -0.9166666665) = 0.5069444442 Calculate the square root of the right side: 0.712000312 Break this problem into two subproblems by setting (v + -0.9166666665) equal to 0.712000312 and -0.712000312.Subproblem 1
v + -0.9166666665 = 0.712000312 Simplifying v + -0.9166666665 = 0.712000312 Reorder the terms: -0.9166666665 + v = 0.712000312 Solving -0.9166666665 + v = 0.712000312 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '0.9166666665' to each side of the equation. -0.9166666665 + 0.9166666665 + v = 0.712000312 + 0.9166666665 Combine like terms: -0.9166666665 + 0.9166666665 = 0.0000000000 0.0000000000 + v = 0.712000312 + 0.9166666665 v = 0.712000312 + 0.9166666665 Combine like terms: 0.712000312 + 0.9166666665 = 1.6286669785 v = 1.6286669785 Simplifying v = 1.6286669785Subproblem 2
v + -0.9166666665 = -0.712000312 Simplifying v + -0.9166666665 = -0.712000312 Reorder the terms: -0.9166666665 + v = -0.712000312 Solving -0.9166666665 + v = -0.712000312 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '0.9166666665' to each side of the equation. -0.9166666665 + 0.9166666665 + v = -0.712000312 + 0.9166666665 Combine like terms: -0.9166666665 + 0.9166666665 = 0.0000000000 0.0000000000 + v = -0.712000312 + 0.9166666665 v = -0.712000312 + 0.9166666665 Combine like terms: -0.712000312 + 0.9166666665 = 0.2046663545 v = 0.2046663545 Simplifying v = 0.2046663545Solution
The solution to the problem is based on the solutions from the subproblems. v = {1.6286669785, 0.2046663545}
| 10xy-8xy-xy= | | (x^2-9x+8)+3(2x^2+x-3)= | | 3/4•w=6 | | 2(12a+18b)= | | H/6=36 | | (z-8)(z-6)=0 | | 3(x+6)=7-8x | | 6(4a+6b)= | | 3x+1=6y+2 | | (3x^2-3x+4)+(5x^2-4x+6)-(7x^2+3)= | | 12(2a+3b)= | | y-(-12)=49 | | -143/13 | | 4c+6d-8(4c-2d)= | | 3(8a+9b)= | | x^4+12x^3-17x+2=0 | | m/9=50 | | 4*(g+7)=-64 | | 6+s=28 | | 450000+0.04x=x | | x=(15-4)+3-(12-5*2)+(5+16+4)-5+(10-8) | | 6+s=2 | | X^2+40x-1500=o | | 6+5=28 | | 9x+3x=12 | | 1/2hb | | z-3/8=5/8 | | 2x+7x+12=-35 | | 3/8=21/x | | F(x)=tan^7(x) | | y=4-55 | | X-1/2-5=1 |