5(7-z)=z(z-9)

Simple and best practice solution for 5(7-z)=z(z-9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(7-z)=z(z-9) equation:



5(7-z)=z(z-9)
We move all terms to the left:
5(7-z)-(z(z-9))=0
We add all the numbers together, and all the variables
5(-1z+7)-(z(z-9))=0
We multiply parentheses
-5z-(z(z-9))+35=0
We calculate terms in parentheses: -(z(z-9)), so:
z(z-9)
We multiply parentheses
z^2-9z
Back to the equation:
-(z^2-9z)
We get rid of parentheses
-z^2-5z+9z+35=0
We add all the numbers together, and all the variables
-1z^2+4z+35=0
a = -1; b = 4; c = +35;
Δ = b2-4ac
Δ = 42-4·(-1)·35
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{39}}{2*-1}=\frac{-4-2\sqrt{39}}{-2} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{39}}{2*-1}=\frac{-4+2\sqrt{39}}{-2} $

See similar equations:

| 9(-3x-8)-4(-10-6x)=4x-5-4x | | 3x-2+2x=7+6 | | G(a)=a2+1 | | 85=−7d+8 | | 6v+3(5v-4)=12(2v5) | | -72=-10(2x+10)-7(10x-4) | | 4m/3-6=14 | | 4z=9=z+21 | | Y2+5x+6=0 | | 17u=20 | | 6|2x+1|²+30=28|2x+1| | | 4x-6x+9=0 | | 3x|x-2|+8=20 | | 9x-2x=18 | | 3(u-9)-3=-3(-6u+4)-5u | | -3/5(10)=-3/5(-5/3x) | | -5x-x=-6(1+3x)+2(6x-5) | | -1.8x=-1.56 | | -6y×4+4y/3=-36 | | -9m-(7+8m)=-126 | | (x+x)(x+10)=1500 | | 11x+10=10x+16 | | B=40.75-0.25x | | 7x-5=-12x-10 | | -2b+7=-9 | | 2w+6=-2(w+9) | | -4(u-6)=9u+37 | | 2(x-3)2=18 | | -6u+32=-4(u-3) | | 5(x-7)−2(3x-4)-1=3x | | 28=7x+(x-4) | | 2x2-6=4x. |

Equations solver categories