5(7-2h)=1/2h-3

Simple and best practice solution for 5(7-2h)=1/2h-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(7-2h)=1/2h-3 equation:



5(7-2h)=1/2h-3
We move all terms to the left:
5(7-2h)-(1/2h-3)=0
Domain of the equation: 2h-3)!=0
h∈R
We add all the numbers together, and all the variables
5(-2h+7)-(1/2h-3)=0
We multiply parentheses
-10h-(1/2h-3)+35=0
We get rid of parentheses
-10h-1/2h+3+35=0
We multiply all the terms by the denominator
-10h*2h+3*2h+35*2h-1=0
Wy multiply elements
-20h^2+6h+70h-1=0
We add all the numbers together, and all the variables
-20h^2+76h-1=0
a = -20; b = 76; c = -1;
Δ = b2-4ac
Δ = 762-4·(-20)·(-1)
Δ = 5696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5696}=\sqrt{64*89}=\sqrt{64}*\sqrt{89}=8\sqrt{89}$
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(76)-8\sqrt{89}}{2*-20}=\frac{-76-8\sqrt{89}}{-40} $
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(76)+8\sqrt{89}}{2*-20}=\frac{-76+8\sqrt{89}}{-40} $

See similar equations:

| 3p+4=10p | | 3x-4=1/2(x+12) | | 20=x/7+2 | | 3t+4=t+20 | | m÷5-2=6 | | x=1/2(12+(3x-4)) | | x+1/2x+3=3/8 | | 8^(x+1)=16 | | 22=5x2 | | 12χ²+x-6=0 | | 12x²+x=6 | | 2x+3=-0,5x+1 | | 36-y=4y | | 15w+4=24-7w | | (x+6)/10=7/5+(x-1)/7 | | 11c=14 | | 12x^+x=6 | | 22=(3w+7) | | x^-1/3=2 | | 3x/2=48 | | (7x-2)^2=4 | | (x+2)^2=16 | | 3p/2-p/3=4 | | (√3x-6))+6=12 | | 4/7(x+1)=1/21(x+5) | | 2x2-21x+45= | | 7x2=-9x | | 27m^2−36m+12=0 | | 27m2−36m+12=0 | | (x+1)(x+3)=12 | | 64x+x^2=16× | | 5/4x-3=-4/4-3x |

Equations solver categories