5(3x-6)-2=5(x-5)+23

Simple and best practice solution for 5(3x-6)-2=5(x-5)+23 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(3x-6)-2=5(x-5)+23 equation:


Simplifying
5(3x + -6) + -2 = 5(x + -5) + 23

Reorder the terms:
5(-6 + 3x) + -2 = 5(x + -5) + 23
(-6 * 5 + 3x * 5) + -2 = 5(x + -5) + 23
(-30 + 15x) + -2 = 5(x + -5) + 23

Reorder the terms:
-30 + -2 + 15x = 5(x + -5) + 23

Combine like terms: -30 + -2 = -32
-32 + 15x = 5(x + -5) + 23

Reorder the terms:
-32 + 15x = 5(-5 + x) + 23
-32 + 15x = (-5 * 5 + x * 5) + 23
-32 + 15x = (-25 + 5x) + 23

Reorder the terms:
-32 + 15x = -25 + 23 + 5x

Combine like terms: -25 + 23 = -2
-32 + 15x = -2 + 5x

Solving
-32 + 15x = -2 + 5x

Solving for variable 'x'.

Move all terms containing x to the left, all other terms to the right.

Add '-5x' to each side of the equation.
-32 + 15x + -5x = -2 + 5x + -5x

Combine like terms: 15x + -5x = 10x
-32 + 10x = -2 + 5x + -5x

Combine like terms: 5x + -5x = 0
-32 + 10x = -2 + 0
-32 + 10x = -2

Add '32' to each side of the equation.
-32 + 32 + 10x = -2 + 32

Combine like terms: -32 + 32 = 0
0 + 10x = -2 + 32
10x = -2 + 32

Combine like terms: -2 + 32 = 30
10x = 30

Divide each side by '10'.
x = 3

Simplifying
x = 3

See similar equations:

| 12q^2-188q-64=0 | | 2x+3=6(2x+2) | | x+4=120 | | j^2-16j-17=0 | | 8+18x=54 | | 8x-(4x-8)=4+3x | | -5(v+4)+2v+6=6v+12 | | 2/9-15=3 | | 11+5+25*12-10= | | 63z^2-175=0 | | (7+5)+4*(12-7)= | | 1/2[6x-2] | | 7+5+4*12-7= | | 3x^2-2+4x^8-x= | | 3(5x+3)=2(x-1) | | 15j^2-10j-80=0 | | 2x+3=11x-1 | | -(5p+2)= | | 16m^2+6m-1=0 | | 8-7+6x=2x-9 | | 18x^3+18x^2+x= | | 3+0.5(4a+8)=9-29 | | 8x^2+15= | | 5(z-4)=45 | | -7p-3(6-5p)=5(p-3)-15 | | 3x=7-2y | | 6n^2-13n+5=0 | | -[7z-(14z+8)]=8+(6z+3) | | 2x-10=2y-5 | | 7-2y/3 | | 2t^2-27t+13=0 | | (k^2+2)-(5k^2-5k+7)= |

Equations solver categories