5(2z-1)-2(z+9)=6(z+1)

Simple and best practice solution for 5(2z-1)-2(z+9)=6(z+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(2z-1)-2(z+9)=6(z+1) equation:


Simplifying
5(2z + -1) + -2(z + 9) = 6(z + 1)

Reorder the terms:
5(-1 + 2z) + -2(z + 9) = 6(z + 1)
(-1 * 5 + 2z * 5) + -2(z + 9) = 6(z + 1)
(-5 + 10z) + -2(z + 9) = 6(z + 1)

Reorder the terms:
-5 + 10z + -2(9 + z) = 6(z + 1)
-5 + 10z + (9 * -2 + z * -2) = 6(z + 1)
-5 + 10z + (-18 + -2z) = 6(z + 1)

Reorder the terms:
-5 + -18 + 10z + -2z = 6(z + 1)

Combine like terms: -5 + -18 = -23
-23 + 10z + -2z = 6(z + 1)

Combine like terms: 10z + -2z = 8z
-23 + 8z = 6(z + 1)

Reorder the terms:
-23 + 8z = 6(1 + z)
-23 + 8z = (1 * 6 + z * 6)
-23 + 8z = (6 + 6z)

Solving
-23 + 8z = 6 + 6z

Solving for variable 'z'.

Move all terms containing z to the left, all other terms to the right.

Add '-6z' to each side of the equation.
-23 + 8z + -6z = 6 + 6z + -6z

Combine like terms: 8z + -6z = 2z
-23 + 2z = 6 + 6z + -6z

Combine like terms: 6z + -6z = 0
-23 + 2z = 6 + 0
-23 + 2z = 6

Add '23' to each side of the equation.
-23 + 23 + 2z = 6 + 23

Combine like terms: -23 + 23 = 0
0 + 2z = 6 + 23
2z = 6 + 23

Combine like terms: 6 + 23 = 29
2z = 29

Divide each side by '2'.
z = 14.5

Simplifying
z = 14.5

See similar equations:

| 3x+81=9(x+9)-6 | | 14=10x-6 | | 3x+4y=56 | | 2x-100=40+9x | | 4h/11+23=21 | | g/5-13=-9 | | 4(3f+5)=-4 | | 6n+4=-8 | | 6x-8y=22 | | 5x+2y=-25 | | 0.08+0.09(x+200)=690 | | (2x-3)(-4x+2)(9x+22)=0 | | -3x^3+x^2-33=x | | 3x-20=x+18 | | 2x-23=x+17 | | 4r^2-9=81 | | x-6=54 | | 12x^2-38x+3=0 | | x+10=79 | | 17r^2-4r+10=0 | | X-19/3=17/6 | | 5r^2+10r-11=0 | | k-75=46 | | 3x^2-16x-7=0 | | 4x-3y=9fory | | 10-3v=7 | | 1/2^1/2 | | 24mn-16n= | | 90+(x+10)= | | -5x-12=-102 | | 2x+9=32 | | 2+3x-3=-13 |

Equations solver categories