5(2c+7)-3c=7c(c+5)

Simple and best practice solution for 5(2c+7)-3c=7c(c+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(2c+7)-3c=7c(c+5) equation:



5(2c+7)-3c=7c(c+5)
We move all terms to the left:
5(2c+7)-3c-(7c(c+5))=0
We add all the numbers together, and all the variables
-3c+5(2c+7)-(7c(c+5))=0
We multiply parentheses
-3c+10c-(7c(c+5))+35=0
We calculate terms in parentheses: -(7c(c+5)), so:
7c(c+5)
We multiply parentheses
7c^2+35c
Back to the equation:
-(7c^2+35c)
We add all the numbers together, and all the variables
7c-(7c^2+35c)+35=0
We get rid of parentheses
-7c^2+7c-35c+35=0
We add all the numbers together, and all the variables
-7c^2-28c+35=0
a = -7; b = -28; c = +35;
Δ = b2-4ac
Δ = -282-4·(-7)·35
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1764}=42$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-42}{2*-7}=\frac{-14}{-14} =1 $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+42}{2*-7}=\frac{70}{-14} =-5 $

See similar equations:

| 45-4.25x=19.50 | | 4x-64+9=-23 | | −4(−2x+5)−5x+5=-24 | | 31+3x=x+8 | | 9x=16=4x | | 9+n/15=8 | | x-1/x+3=1/3 | | 1/3z-11=3 | | -2(4p-3)-5=-27-4p | | −9x−12+3x=12 | | -13=-7x+4(x+2) | | -180=-6(6-4n) | | 2/2x+10=8 | | 3(x−5)=45 | | -6-2n=2n-5 | | 2(r+6)=4(r+4) | | 6x+5=5x-8 | | 7m-7m+m=11 | | 49-7=6x | | -8c-16c-8=16 | | -6+7x=6x-4+2x | | 4y²+12y=0 | | 3n*3n=9n^2 | | -6.7x+4.5=-2.2 | | 8z+5z-9z+2=14 | | -13=-7x+4x+8 | | 4x+5=‐4x‐5 | | -1-9(8n+7)=9n+20+3n | | -3x+5x-8=10 | | y/2-15=-11 | | 9=r+6 | | 4b^2=16 |

Equations solver categories