5(2.2y+3.4)=5y(y-2)+6y

Simple and best practice solution for 5(2.2y+3.4)=5y(y-2)+6y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(2.2y+3.4)=5y(y-2)+6y equation:



5(2.2y+3.4)=5y(y-2)+6y
We move all terms to the left:
5(2.2y+3.4)-(5y(y-2)+6y)=0
We multiply parentheses
10y-(5y(y-2)+6y)+17=0
We calculate terms in parentheses: -(5y(y-2)+6y), so:
5y(y-2)+6y
We add all the numbers together, and all the variables
6y+5y(y-2)
We multiply parentheses
5y^2+6y-10y
We add all the numbers together, and all the variables
5y^2-4y
Back to the equation:
-(5y^2-4y)
We get rid of parentheses
-5y^2+10y+4y+17=0
We add all the numbers together, and all the variables
-5y^2+14y+17=0
a = -5; b = 14; c = +17;
Δ = b2-4ac
Δ = 142-4·(-5)·17
Δ = 536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{536}=\sqrt{4*134}=\sqrt{4}*\sqrt{134}=2\sqrt{134}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{134}}{2*-5}=\frac{-14-2\sqrt{134}}{-10} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{134}}{2*-5}=\frac{-14+2\sqrt{134}}{-10} $

See similar equations:

| m/10=450 | | 4x+1,5x=22 | | 8y-10=78 | | 11-5a=2a-10 | | -4(x-3)=-12-4x | | y+10=-4/5 | | 9a-1/2=2a+3/5 | | 6y-5=3y-8 | | 25x+25/5x+5=0 | | -13.3-2.5y=-4.3 | | 50+20x=x | | 3(j)+9=48 | | 25h+25/5h+5=0 | | 40+25x=x | | 7x−5=3x+7 | | 3(q)+35=83 | | x2−2x−7=0 | | 2(q-60)=48 | | 40x+25x=50x+20x | | 7x-2=57 | | 6(w-87)=72 | | d/9+29=31 | | (x/5)+5=20 | | 5+11x-2x=3+2x-2x | | 45=3(k-80) | | 5x+9x-2x-5=19 | | 6(f+7)=90 | | 5x=212,5 | | 3g-7=5g-1 | | 5v-9=91 | | 6{f+7}=90 | | 3x2–12x–36=0 |

Equations solver categories