If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4z^2+9z+4=0
a = 4; b = 9; c = +4;
Δ = b2-4ac
Δ = 92-4·4·4
Δ = 17
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{17}}{2*4}=\frac{-9-\sqrt{17}}{8} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{17}}{2*4}=\frac{-9+\sqrt{17}}{8} $
| 5-5k=45 | | 3u2+6u+3=0 | | 0.5(x-4)=-x-5 | | 7x+6=7x+9 | | 9(w+4)=7w+32 | | 29=18+2x | | 0.5x-9=11 | | 9d-4=41 | | 9r+29=83 | | -7-2m=-3m-1 | | 5x−3=12 | | 5+6v=59 | | 5g-9+6=12 | | k=-2+3/5 | | -3m+17=-61 | | -6(1-6r)=2(r+30 | | 3(x-2)=6+3x | | (2x-1)^2=36 | | 5(x-6)-2x=3(x+10) | | 9k+4=4k-9 | | 6x-2(3+3)=-6 | | 13y-17=60+7 | | 3x-3=7.2 | | 2/3x=499 | | 2(3x+3)=-6+9 | | 50x=85 | | 5x/2-3=x/6-8/3 | | 3.6z+-6.5=0.7 | | 11x-10=6x+6 | | -2/3x^2+24=0 | | 4K+3=8k-9 | | 21=12+2x |