If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4z^2+49z+12=0
a = 4; b = 49; c = +12;
Δ = b2-4ac
Δ = 492-4·4·12
Δ = 2209
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2209}=47$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(49)-47}{2*4}=\frac{-96}{8} =-12 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(49)+47}{2*4}=\frac{-2}{8} =-1/4 $
| 2a+42=72 | | 16f+27=18f+39= | | 4x^2-17x+16=0 | | -9/4x=63/8 | | -3(x+12)=16-× | | -8+14a=7-a= | | 6u2+49u+8=0 | | 27.44=5g+3.89 | | 3a+4(14)=101 | | 2x^-3x-48=0 | | 3d2+14d+16=0 | | 3.5=75x | | -55=-4x-7(5x-20) | | 4/7x-5=2/3+6x | | 17+x=-23+3x | | S(t)=10√1+t^2 | | 737=11(7x-24) | | 4/3(-9x+12)-x=16x+11 | | 25=9y | | 10x20=4x | | 6x-2x+10=5x+6 | | -8(v-1)=-(v-8) | | x^2−7x+12=0 | | 8-3x=4+50 | | 2x-5(4x-25)=251 | | 4x(x+8)=15(x+1) | | 8-3x=40+50 | | -198=9(-7x+20) | | -21/4x+1+1/2=93/8 | | 9c-2= | | 198=9(-7x+20) | | 3(10x-4)=12(-1-8x) |