If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2=64
We move all terms to the left:
4y^2-(64)=0
a = 4; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·4·(-64)
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32}{2*4}=\frac{-32}{8} =-4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32}{2*4}=\frac{32}{8} =4 $
| -10+5s=-5s+10 | | s−52=2 | | -8r+7=-7r | | -7w+18=-6w | | 1=q-7/3 | | 18+18=2x+6 | | -4m=-6-3m | | -3b=-10-4b | | 6c-7=-5 | | x+3x+15=63 | | 10=2(q+3) | | 110+1/2y=180 | | -10+s=-9s+10 | | 9/11×x=3/4 | | 10+d=-3d-10 | | t+259=6638 | | p+1/3=1 | | 3h-2=1-3+5h | | -10-p=10+4p+10 | | 3x+4+3x+4=8x-10 | | b-10=3b+10 | | y=|6|-3 | | z−33=2 | | -186=4+5(-5b-3) | | y.y-3=12 | | 7z-5=6z+4 | | (2x+9)+(3x-1)+x=180 | | 9u=10u+8 | | 368=5(8-8p)+8 | | 3/2=(3-6w) | | 4q=5q-9 | | -10+k=10-4k |