If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2=24
We move all terms to the left:
4y^2-(24)=0
a = 4; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·4·(-24)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{6}}{2*4}=\frac{0-8\sqrt{6}}{8} =-\frac{8\sqrt{6}}{8} =-\sqrt{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{6}}{2*4}=\frac{0+8\sqrt{6}}{8} =\frac{8\sqrt{6}}{8} =\sqrt{6} $
| x9+6=9 | | 11=k/5+7 | | -55=-17+2y | | 26=w-2 | | -2(x+16)=40 | | 0.5/1.25=x/3.75 | | 3v+v+-3=17 | | 7n+6=-5(n-6) | | 8(t-76)=96 | | a5=-11 | | 4(s+9)=88 | | 6(q+2)=42 | | 30-x=366 | | s/6=24 | | 58-x=241 | | q-26/6=9 | | 1/3x =5 | | 3/y+2=5 | | 15=-11m+4 | | 4x–19=x–10 | | 8(3x-1)=-4(2x+6) | | 48=3+3v | | -4x–19=x–10 | | -6q-1+7=10q-10 | | 2(m-9)=-6 | | 5^2+b^2=9^2 | | 3a+13=16 | | 3p-2=43 | | 67=3x+7 | | 4x+2+3X=5+2×+8 | | 17p=29 | | 2(×+4)+(x+4)=52 |