If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2=196
We move all terms to the left:
4y^2-(196)=0
a = 4; b = 0; c = -196;
Δ = b2-4ac
Δ = 02-4·4·(-196)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-56}{2*4}=\frac{-56}{8} =-7 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+56}{2*4}=\frac{56}{8} =7 $
| 6-7x=6x-10x15 | | 4(x-2)=1/4(8x-8) | | 4(2x-7)=6x+14 | | –20=j/6+–26 | | -4(-2x-2)+x2=-48 | | 9d-1/2=5 | | -5x-30=-4x-31 | | (0.25x-15.75)=17 | | 5(5x+4=120 | | 3(5-x)=-15 | | -8=8r-44 | | 32.5/25=97.5/k | | 1/5x-2/3=3/10 | | 27+3t=66 | | 2x+1=2x–1 | | 14+4x=4x-7x-42 | | 9x+36+45=180 | | 15=2(g-7)-9 | | 3c+750+150=200-4c | | -6x+12=x+40 | | $125=35+30x | | 2x=17+x-24 | | 9x+21=6x+45 | | $125=35+30x. | | 4(5+4x)=80 | | -5x-2x-22=13 | | 6(4–z)=2z | | 9x+36=35 | | -10y+18=-3(5y- | | 5(x)-6=44 | | 7x+19=3+3x | | -3(x-2)-3x=2(x-5)+x–2 |