If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2=16
We move all terms to the left:
4y^2-(16)=0
a = 4; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·4·(-16)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16}{2*4}=\frac{-16}{8} =-2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16}{2*4}=\frac{16}{8} =2 $
| H=-16t^2+82t+3 | | 8x-3+×=10x+30 | | 7/8x=35/40 | | -33=75+12x | | x^=8x-22 | | -c=-9-10c | | 2(x-1)-2(x-2)=-(×-3) | | 8/x+3=2/7 | | -13h+5h−7h−6=9 | | 5(-4-2s)=2s-4 | | 3v+7(v+4)=38+5v | | 3d+d+3=7 | | 11g−3g=16 | | -8b+6=-2b | | 14g-14=13g | | -11+r=4(r+6)+4r | | 4(4m+2)=88 | | -18=1n-2-5n | | j/8=-2 | | .55x=1 | | -3-32=4(b-8) | | 3×+y=84 | | -20=-3c+2c | | 25+10x=-55 | | 2(4x+1)+2=-3x+6 | | 4x+2x+5=35 | | -1=x/5-6 | | 4x=5=-11=5 | | 3(4n-6)=66 | | -14.1q+19.67=-19.8q-7.12 | | 3/4-9=4(g+1) | | t/4-2=-5 |