If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2-9=0
a = 4; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·4·(-9)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*4}=\frac{-12}{8} =-1+1/2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*4}=\frac{12}{8} =1+1/2 $
| 18m+-15m=-18 | | 20x+60(0)=3000 | | 3x+5=-0.7 | | −9+6x=−3(3−2x) | | 25+30h=175 | | 4(p+1)=2(p-4) | | 13x-x-3x+2x-9x=10 | | 7(9x-7)=21 | | 9=a+15 | | x-44=36+5x | | 11x-179=91+2x | | x44=36+5X | | 5x-13=7x+17 | | r-r+3r+r=16 | | -3(-x-2)=24 | | 4x(3x-20)+1900=0 | | r/2+19=27 | | 3x+5=7/9 | | y+2y+y=12 | | -7+x/2=-16 | | 6x-168=147+15x | | -13p=39 | | 4/0f=16 | | 70/x=150/60 | | 5(3x+2)=85* | | -x-4-5x=16 | | –9m+2=–8−4m | | 12x^2=4x+ | | 4x(3x+20)=0 | | 7-7k-6k=0 | | 4x-5+14x+12=135 | | 6x-252=-11x+71 |