If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+8y-3=0
a = 4; b = 8; c = -3;
Δ = b2-4ac
Δ = 82-4·4·(-3)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{7}}{2*4}=\frac{-8-4\sqrt{7}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{7}}{2*4}=\frac{-8+4\sqrt{7}}{8} $
| -9+6x=21 | | 30.98=40-x | | 4y-1-9=7y | | 6(-1+3x)=-60 | | -17=5u+8 | | 13x=7=-32 | | 4x+1=-31-2x | | 9.4=t/3.5 | | 2n^2-7n-(3)=0 | | 2n^2-7n=3 | | 4-7x=-5x-10 | | 244=98-y | | -7x+2=62-x | | 5v+16=71 | | 0,8-0,42x=0,125x+0,8 | | -x+2=2+4x | | 9m-6=7m+17 | | −19=−0.2k | | 9m=7m+23 | | 5y2-7y-6=0 | | 9x-42=7x-4 | | 2x^2-6x+9=7x+7x | | -6x=12=42 | | 6x+7•-4=4x+4•-4 | | (x-1,5+x)2=60 | | (x-15)^2=28 | | (x-15)^2=29 | | -9=y-1 | | 12z-16+15z=27z-5 | | 4x+31=135 | | 2*(2x+1,5+x)2=60 | | 2*(2x+1,5+x)2=60) |