If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+8y+3=0
a = 4; b = 8; c = +3;
Δ = b2-4ac
Δ = 82-4·4·3
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4}{2*4}=\frac{-12}{8} =-1+1/2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4}{2*4}=\frac{-4}{8} =-1/2 $
| 90+3x=5x+2 | | F(x)=3/2x-10 | | 3x=(5x+2) | | -z/8=-29 | | 86=q+14 | | 2x-13=14-x | | x/7-1.1=-18.6 | | 4x+0.4(-3)=-1.2 | | 0.15w+0.35=0.22w+0.14 | | 6+t=7.3+18.6 | | 4(0.5)+0.4y=-1.2 | | d-60=39 | | 180=3y+5 | | 52=m-1 | | .75(x-20)=30 | | 360=90+150+x | | 2xx=150 | | .75(x-20)=12 | | v-53=35 | | 29-2x=6x-11 | | c+48-37=100 | | n+74=75 | | 8+2g-g/2;=6 | | 2d−1=9d= | | b+1/4=43/4 | | s+10=100 | | 3e+8=29 | | 4x=30° | | 27=9z+11-5z | | a3+2=5 | | f+36=77 | | 7x-69=5x-11 |