If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+5y=6
We move all terms to the left:
4y^2+5y-(6)=0
a = 4; b = 5; c = -6;
Δ = b2-4ac
Δ = 52-4·4·(-6)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-11}{2*4}=\frac{-16}{8} =-2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+11}{2*4}=\frac{6}{8} =3/4 $
| 11x+11=12x-36 | | 6z+7=-29 | | 18x+5+(-1+8x)=46 | | (5k-1)^2=18 | | S−1.6x=5.7 | | 3x^2-36x=-96 | | 9^2+r^2=6^2+r^ | | w/8=6-5 | | 2=-4x+2(x+2) | | 12y-12=3(7y-4) | | -14-8x=-2(3x7) | | m/2+11=25 | | 1/3(x+5)=6 | | 9+36×=y | | 8(x-1)-8=5x+3(1+x) | | x=2.40=10.11 | | -16=-2(x-3)-8(8-x) | | -4(2x-10)=-8x+40 | | 2n+-3n=2/9 | | x=2.46=10.11 | | 7x+10+150=180 | | 2x-6x-7=-4x+3-7 | | 75+3x=150 | | 95(2w-5)=180 | | 6x+(5x+2)=134 | | x-4.4=2.5 | | 11-10=1-n | | X+4y=80. | | 27=3(-2+3x)-3(1+7x) | | 2n+5-3+6n=34 | | n+4.2=9 | | -2y+6=-10 |