If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+5y-21=0
a = 4; b = 5; c = -21;
Δ = b2-4ac
Δ = 52-4·4·(-21)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-19}{2*4}=\frac{-24}{8} =-3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+19}{2*4}=\frac{14}{8} =1+3/4 $
| 2b+12÷2=3 | | 28=4(2x) | | x+0.26x=70 | | x-0.20x=280000 | | Q-20-20p=0 | | x-0.25x=420000 | | x+(2.5x-70)=3108 | | x-0.25x=42000 | | F(n)=8n=5 | | 2(4+m)–8=20 | | 7x+2(+6)=39 | | 9(x+3)-4=23 | | 16^-v(64^v)=16 | | 17=x(-9) | | 4/5x-3=4/10x+7 | | 2(3x+9)=-50+32 | | 1.035^x=3 | | 12x–5=55 | | -3x+1-2x-16=x-75 | | 4+x=34 | | .3x=x+200 | | -(3x-1)/3-2(x-8)/5=x-5 | | 8(x+1)=4(3x+1) | | 8(x+2)=4(3x+1) | | -7/3=-7/2n+1-3/2n | | 2x²-12x+13=0 | | -x2+12x=0 | | -1.4x=0.42 | | a=2(20)/1^2 | | 180÷4x=58 | | -1.7x=0.34 | | 4x+3-x+8=243 |