If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+52y-1=0
a = 4; b = 52; c = -1;
Δ = b2-4ac
Δ = 522-4·4·(-1)
Δ = 2720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2720}=\sqrt{16*170}=\sqrt{16}*\sqrt{170}=4\sqrt{170}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(52)-4\sqrt{170}}{2*4}=\frac{-52-4\sqrt{170}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(52)+4\sqrt{170}}{2*4}=\frac{-52+4\sqrt{170}}{8} $
| 2(19-c)=2(6c+2)+3 | | 2(3x+4)=6-2x-5 | | 2(3x-3)=54 | | 7p=3.43 | | 5(9-7x)=-95 | | -7(-6x+3)=357 | | 9y-22=3y+2 | | 15=5=4(2d-3) | | 3^2x=78 | | 3/8x=-14 | | x2-9x-252=0 | | 3(7x+6)=228 | | 14=5v-3v | | 6(2x-7-3=12x-21 | | f/2-3=14 | | 2=5w-13 | | A=-6x+8+9x-2 | | 176=64-x | | x13=16 | | d-(2d+7)=0 | | d-(2d+7(=0 | | 6y=-4(-2y+6)+20 | | 2x-7+x-23+x+30=180 | | d+5/2=-1 | | d+5/2=2 | | 2d+(d-5)=0 | | 3x-4.5x=-18-4.5 | | -48=-w/7 | | 850=5(x=18) | | 2m-16=-m-3+2 | | 5x+-4=-15 | | 6y=20-17 |