If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+52y+162=0
a = 4; b = 52; c = +162;
Δ = b2-4ac
Δ = 522-4·4·162
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(52)-4\sqrt{7}}{2*4}=\frac{-52-4\sqrt{7}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(52)+4\sqrt{7}}{2*4}=\frac{-52+4\sqrt{7}}{8} $
| 0.3x-0.4=10 | | 37x−4=2x+61 | | 8x-7+7x+52=90 | | -2/3x-1=5 | | 3x+6=-2x+1 | | /2b+b+(b+45)+90+(2b-90)=540 | | 17×-8x-11=100-30 | | 2x-3=11x-4x+9 | | 3(800-20m)=4(1000-25m) | | m/9=81 | | 10)-7/2*(5/2*x-3/2)=63/2 | | 4x+52x+25= | | 8)-4(1+6k)=-196 | | 3x+6=2x23x2 | | 2(x+6)+8=-3(x-2)-1 | | 4x-9=3x+5x= | | 0.02(y-4)+0.14=0.06y-0.7 | | 9+2(-4x)-3=19 | | (x)=2x–1 | | 2(x+6)=1x+5 | | 2(x-4)+2x=6x-2= | | 4)-8x+4x=4 | | X2+11x-13=0 | | 2)b/16=17/16 | | -8n-8+2n=-32 | | 9)7(-3-3x)+4(-x+4)=20 | | 6x+3=5x+10= | | 1/2(4x+6)=24 | | 3(-5n-8)=-84 | | 0.7x-0.87=0.5x+0.2 | | 4(x-1)/2=4(x+3 | | 5x.5³=1 |