If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+2y-3=0
a = 4; b = 2; c = -3;
Δ = b2-4ac
Δ = 22-4·4·(-3)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{13}}{2*4}=\frac{-2-2\sqrt{13}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{13}}{2*4}=\frac{-2+2\sqrt{13}}{8} $
| 2/8=v/2 | | 2x+8+2x+3x+30=180 | | 6x-3=3x+12 | | 2x+2x+3x+30=180 | | 88=4(1+7a) | | f(-5)=17(-5)-7 | | 5x^2+18=15/2x | | x/2-7=+3x-22 | | -3x-7=-7x+15 | | 3x²/6=8 | | 0=8m+6 | | 5(x–4)x=8 | | y-28=17 | | 125=-5(-3a-4) | | 10−41 x=7 | | 125=-5(-3a-4 | | 5=3x4 | | 2y–3=4y | | 8–2(x+10)=4x–6 | | 5x^2-5x^2=6.25 | | 102=-6n+8(3n+6) | | x^2+11x=7x+21x2+11x=7x+21 | | 5+(-8)p=29 | | 159x23=3657 | | 29b+b+1-1=5(6b) | | 8.4(x-4.5)=-33.6 | | 8^3x-4=8^2x+1 | | 21.2x=0.2 | | 15m=255 | | m-454=21 | | 19d+–8d+–9d=–16 | | J+5j+5+5=5j+j+2+6 |