If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+18y=0
a = 4; b = 18; c = 0;
Δ = b2-4ac
Δ = 182-4·4·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-18}{2*4}=\frac{-36}{8} =-4+1/2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+18}{2*4}=\frac{0}{8} =0 $
| 40140+8.75x=20x | | v-3.68=1.98 | | (x-1)12-(x-2)/4=5 | | 5x+102x=50 | | 4.02=3p | | 5x-3(8x-3)=-3 | | 53.96+0.12x=65.96+0.07x | | 14.62-x=2 | | 20y-11+7y-7+4y=6=360 | | 2.9=n-4.75 | | x^2=4x+1=0 | | 0.19x=30+0.15x | | 100*(-0.09)=x | | 2.1=0.5*y | | 3t^2+12t+15=0 | | 0.19x=30x+0.15x | | -15+y=11 | | 3n²+15=42 | | 20x+5+24x-1=360 | | 3x+22-6x=7 | | 84=r+81 | | 3/5x1/25-8=(-23) | | 8p−5=43 | | 8p−5=43p= | | z-36=54 | | 4.2+x=2.5 | | -1=5m+3m-8-m | | 9(g-93)=9 | | 196+x=180 | | j+142=835 | | 4(c-3)=6.4 | | 14/21x=3/7 |