4y(y-10)+20=180

Simple and best practice solution for 4y(y-10)+20=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4y(y-10)+20=180 equation:



4y(y-10)+20=180
We move all terms to the left:
4y(y-10)+20-(180)=0
We add all the numbers together, and all the variables
4y(y-10)-160=0
We multiply parentheses
4y^2-40y-160=0
a = 4; b = -40; c = -160;
Δ = b2-4ac
Δ = -402-4·4·(-160)
Δ = 4160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4160}=\sqrt{64*65}=\sqrt{64}*\sqrt{65}=8\sqrt{65}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-8\sqrt{65}}{2*4}=\frac{40-8\sqrt{65}}{8} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+8\sqrt{65}}{2*4}=\frac{40+8\sqrt{65}}{8} $

See similar equations:

| 25^2-20t+4=0 | | 3x-11+5x-27=180 | | 4(x+3)2=8-3x | | 2x-6=5x-11 | | 4x^2+11x=–6 | | 8w-5=2(3w-3) | | 4(x+3-2=7-3x | | 4x2+11x=–6 | | 1/2x=18-x^2 | | x2/3+10=x | | 6x+20+16x+16=180 | | 6-m/9=19 | | 6x+20+8x+8=180 | | 7-2w=3w | | 52+30=-5r+20 | | 9-m/3=15 | | 14=a/5-4 | | -5x-24=16 | | 10x-5.25+7.5x=3.5 | | 50+30=-5r+20 | | |8x+8|+6=70 | | 7-2(x-4)+2x=15 | | (3x+1)+(0.5x+3)=18 | | 4n^2+4n-76=0 | | 5(3x-4)=4(x-5)+5 | | 2.50x=1200+1.10x | | (3x+1)+(0.5+3)=18 | | O.5t-3t+5=0 | | 3(k-4)-2(k+1)-13=-18 | | 0.2x+2.6=0.8x-0.4 | | -3x+8=-10x-13 | | |x-6|=x-20 |

Equations solver categories