If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y(2y+30)=180
We move all terms to the left:
4y(2y+30)-(180)=0
We multiply parentheses
8y^2+120y-180=0
a = 8; b = 120; c = -180;
Δ = b2-4ac
Δ = 1202-4·8·(-180)
Δ = 20160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20160}=\sqrt{576*35}=\sqrt{576}*\sqrt{35}=24\sqrt{35}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-24\sqrt{35}}{2*8}=\frac{-120-24\sqrt{35}}{16} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+24\sqrt{35}}{2*8}=\frac{-120+24\sqrt{35}}{16} $
| -4(a-4)-6a-8=38 | | X+4+3x=110 | | 18-x/2=3 | | -8n-3=9+3-3n | | -5(2+8k)+1=-9-6k | | 9x-5+9x-1=84 | | -18=1/2b | | 8+3n/12=1.3 | | -4y=10-6y | | 2k+6=k+3 | | -8+8q=7q | | 5(8)+4d=37 | | 15b-24=3(5b+5) | | 1/2+4x=2-5x | | 17x+30=5x+42 | | x^2−4x−28=−6x−13 | | -(5y+6)-y=-6-6y | | 63535353535.63553535x525343453.636353545=66365.63635x | | (7x+5)+(3x-5)=180 | | -(x-2)=-(2x-3) | | 2j-10=2-2j | | 6(x+1.5)=-18 | | 7x+1+18x=180 | | 6+m=1+6m | | 2(4+5r)=8+5r | | x-366=425 | | 9(2g−3)−4g=33 | | -3z=-9+6z | | 4+1.1(-8x-9.3)+8.6x=9 | | 2y+8+142=180 | | -5(-1-n)+2n=7(2n-3)+5 | | 2x-5(x-5)=-2+4x+6 |