4x=(x+30)(5x-25)

Simple and best practice solution for 4x=(x+30)(5x-25) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x=(x+30)(5x-25) equation:



4x=(x+30)(5x-25)
We move all terms to the left:
4x-((x+30)(5x-25))=0
We multiply parentheses ..
-((+5x^2-25x+150x-750))+4x=0
We calculate terms in parentheses: -((+5x^2-25x+150x-750)), so:
(+5x^2-25x+150x-750)
We get rid of parentheses
5x^2-25x+150x-750
We add all the numbers together, and all the variables
5x^2+125x-750
Back to the equation:
-(5x^2+125x-750)
We add all the numbers together, and all the variables
4x-(5x^2+125x-750)=0
We get rid of parentheses
-5x^2+4x-125x+750=0
We add all the numbers together, and all the variables
-5x^2-121x+750=0
a = -5; b = -121; c = +750;
Δ = b2-4ac
Δ = -1212-4·(-5)·750
Δ = 29641
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-121)-\sqrt{29641}}{2*-5}=\frac{121-\sqrt{29641}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-121)+\sqrt{29641}}{2*-5}=\frac{121+\sqrt{29641}}{-10} $

See similar equations:

| 6=18b​ | | 38x−4.5x=0.4 | | 3y+5y-3=13 | | -4(2r-7)=92 | | 43-(2c+4)=2=2(c+7)+c | | 11+x+3=28 | | X+7=18p | | 2(3x-7)=6x-14 | | Y=5x+14=3x+10 | | 3(3x-1)^(1/3)-6=0 | | -2a-6=-7-a | | 0.2(0.3=x | | 4x+4=9x-19 | | –4x–9= | | 2x+1=90+3x+4=180 | | 5x+1.50x=35.50 | | 2x+1=90+3x+4-180 | | 7.4w−7.14=9.6w+7.6 | | -8r-10=-8r+8+9r | | 19+12=x | | -3+1/3x=9 | | p+31/6=21/2 | | f=7–2f3 | | 1-5b-8=23 | | 5(x+6+24=9 | | -0/6(r+0.2)=1.8 | | -10m-1=-8m+5 | | 9^4x+2=3 | | 11-3*x=19 | | -2x+35=40 | | y+2/3=31/6 | | -14+5/6c=1 |

Equations solver categories