If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2=2x
We move all terms to the left:
4x^2-(2x)=0
a = 4; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·4·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*4}=\frac{0}{8} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*4}=\frac{4}{8} =1/2 $
| 2x^-3=2^2x+5 | | 36+12z+z^2=0 | | 3.5w+8=3.25w+10 | | 2x^2+15x=8x-52x2+15x=8x−5 | | 15.2-n=4.2 | | 7-(5-8x)=4x+3= | | 3.8u-43.81=14.71 | | -2x+9x+6=0 | | 3.8(u-11.5)-0.11=14.71 | | 5n-6=41 | | -3.15(f-5)=-6.3 | | -3.15=f-5)=-6.3 | | 3.8(c-14)=11.4 | | 5.6=7-k | | z-16.3=2.2 | | f-5.42=4.44 | | (-31+6)t=-1250 | | 3x+2(x-5)35= | | (2x+45)+x=`180 | | 11.66=3(y-14.83)+11 | | j+4.97=9.03 | | (-8+52)p=-836 | | 11x-2x+16=-3x-20 | | p(-8+52)=-836 | | -3.1/w=1 | | 3x-4=-61 | | 3z-15=75 | | 2(2z−4)= 32 | | 5x-15+9=34 | | -6(w+30)=-258 | | 12x-15=3(2x+11) | | 5(2x-4)=7x+1 |