If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2=225
We move all terms to the left:
4x^2-(225)=0
a = 4; b = 0; c = -225;
Δ = b2-4ac
Δ = 02-4·4·(-225)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60}{2*4}=\frac{-60}{8} =-7+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60}{2*4}=\frac{60}{8} =7+1/2 $
| -4=0.5x-0.1 | | 0.5x=3.9 | | 4a-2a-2=20 | | 25x+3=6x | | 5(3x+4+2/5)=65 | | 9j+5=8j-5 | | 8x+-3=6x-9 | | √c=12 | | −4(−3+x)=20 | | 5=3*2x | | 2w+2(w+4+1/4)=128+1/2 | | 4-2k=6k-12 | | 11=3x+x² | | 200.96=r² | | 1-x/6=x/3+1/2 | | 9x+31x-8=10(4x+10) | | 1+4(1+8p)=229 | | 6-⅔(x+5)=4x | | 4x(x+5)=20x | | 1/2-1/x-1=3/5 | | b-102=4 | | 200.96=r²(X×3) | | x(x+5)=20x4 | | x^2=16/2 | | b-10/2=4 | | X(4x+5)=20x | | 200.96=x²×(x×3) | | 200.96=x²^(x×3) | | 3n=3/n | | X/3+10=x | | 9(7+k)=162 | | 7k-12=-47 |