If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-9x+1=0
a = 4; b = -9; c = +1;
Δ = b2-4ac
Δ = -92-4·4·1
Δ = 65
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{65}}{2*4}=\frac{9-\sqrt{65}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{65}}{2*4}=\frac{9+\sqrt{65}}{8} $
| 2.9*x=6.04 | | 8s+20=15s-36 | | 3t=2t+12 | | (3-91i)+(67)=(3−91i)+(67)= | | (3-91i)+(67)=(3−91i)+(67) | | 6b-34=b+36 | | x²+6x-160=0 | | 3c+4=c+32 | | 10-x-2=4 | | 4=2+2.5t | | 14-2w-3w=-3(3w-4)-2 | | 8x-9=19+× | | -24=v/4+4 | | 5(2x+6)-2(4x+3)=6(x+4)-3(x+1) | | 0.2m=-13(m+330 | | (8x-23)+(7x-4)=180 | | 24+2(x-4)+3x-2=88 | | Y=3x×2 | | 2x/6+x-2=240 | | 12x-12.8=x^2 | | 6x+6+80=15x+6 | | -5y+10=23 | | 8-3(z+6)=2(3z-8) | | 8-3(3z+6)=2(3z-8) | | 9x+2=-5+7x+21 | | 2(y+12)+2(y-12)=164 | | -171=91v | | 396x-180=315x+63 | | X-3/5=2x-15 | | -(12n^2+11n-15)=0 | | 9+10w=-11 | | -2(y-4)+3(y-4)=6 |