If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-8x-9=0
a = 4; b = -8; c = -9;
Δ = b2-4ac
Δ = -82-4·4·(-9)
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{13}}{2*4}=\frac{8-4\sqrt{13}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{13}}{2*4}=\frac{8+4\sqrt{13}}{8} $
| 3.2x=2(x+12 | | 4a+9=109 | | (9)(x)=1|3x-2 | | 14+4x=2-2× | | 9.2=2(d-1.5) | | (5x+4)+(9x+8)=180 | | F(x)=1|3x-2 | | 8+4w=-2+5w | | 14x=2(3x+4) | | 2(x-5)+7=3(x−2) | | 10-4m+7m=-10 | | 0=4x^2-12x-32 | | 6y+3=44 | | -8x^2+7x-1=0 | | 4x=30.5 | | 13/x+3=5/8 | | 1-2x=2x+6 | | -6(j-940)=-198 | | n+8)+(n−12=) | | -12+1n=5n+4 | | -2x+9=5x-6 | | 8=-6k+3+5 | | 8a-6=19 | | 7(6x+3)=147 | | 5(3x-8)-4=5(x-4)+16 | | 4(-3x+9)=132 | | x2+8-9=0 | | 5(-5x-9)=155 | | x8-9=0 | | 2x+x+10=3x | | 4x-(2x+9)=3x-37 | | x/4+-6=5 |