If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-8x-6=0
a = 4; b = -8; c = -6;
Δ = b2-4ac
Δ = -82-4·4·(-6)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{10}}{2*4}=\frac{8-4\sqrt{10}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{10}}{2*4}=\frac{8+4\sqrt{10}}{8} $
| t11/4=-2 | | -2=t11/4 | | 2x74=20 | | (8x-20)=(4x+18)=(7x-10.5) | | 3.4x-1.2x=-44 | | 3/2=h+1/3 | | -15-x=-21 | | x+(18/100)*x=64000 | | 9x=4*(5+x) | | 128=k*16 | | 128=k*4^2 | | 76=k*19 | | 76=k19 | | 0.4x=250 | | 3/8=y/48 | | 3x*x=56 | | Y=-9/4x+11 | | 9x+5+2x=30 | | 10t^2-5t-50=0 | | 675=30x5 | | 4.4x=1 | | 4(x+5)-6(2x+3)=3(x+14)-2(5x)+9 | | 1.2x=0.85x=x+40 | | -0.2x=-20 | | 2(3x-1)-(x+14)=9 | | 36x^2-27x+14=0 | | 8x-2(2x-1)=18 | | 16-17y=32+31y | | 4.2x-2.3=1.9x | | -7y-16=6y+62 | | K+14k=180 | | x+6.5=25 |