If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-7x-15=0
a = 4; b = -7; c = -15;
Δ = b2-4ac
Δ = -72-4·4·(-15)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-17}{2*4}=\frac{-10}{8} =-1+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+17}{2*4}=\frac{24}{8} =3 $
| 25n/2=375/25 | | 3x+28-4=180 | | (5u+7)(8-u)=0 | | X/4=4/4x=52/4 | | 6-1|5x-9|=-16 | | 2x+11=-3(x-2) | | 5.25(m)=0.1m+1.25 | | C(m)=0.1m+1.25 | | -12=4(x-5( | | 180+30+x=360 | | (4/3)(3/4)=5x | | 4/3*3/4=5x | | 9u-37=7(u-3) | | -8(x-7)=7x+26 | | -9-44=7(x-4) | | -9(x+7)=-5x-23 | | 7x+3=11x+7 | | 8b+32=114 | | 4(x)−4=8 | | 4d−4=8 | | 8=4d−4 | | -v+-10.52=4.48 | | g/6+(-43)=-50 | | g/6+15=19 | | g6+ 15=19 | | 2(t)−35=7 | | 2t−35=7 | | 10t=5500 | | h/5-(-33)=39 | | h/5-(-33)=39 | | h/5−(-33)=39 | | h/5− -33=39 |