If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-6x+1=0
a = 4; b = -6; c = +1;
Δ = b2-4ac
Δ = -62-4·4·1
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{5}}{2*4}=\frac{6-2\sqrt{5}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{5}}{2*4}=\frac{6+2\sqrt{5}}{8} $
| 5t(4-t)=0 | | 5t(4-)=0 | | 12x+3=6x-9 | | x2+5x+9=0 | | 2x+5=5x+29 | | 5.6x=-34.72 | | -5+7g+3g=9 | | 5^(x-5)=9^(4x) | | 6(11x-8)=348 | | 3x-6+3=2x-2 | | g+g+g²=(1+g)² | | 10(6x-12)=420 | | 3x+5=(4/5) | | -4p=208 | | 6x-12+4=6x-7 | | 0.37+1.1m=2.6m-1.18 | | 11(7x-13)=319 | | -v/3=21 | | 8–6x=32 | | 8x-40+30=8x-10 | | 9(6x-17)=117 | | -5+4r=r | | (4w)(5w)=0 | | 20h=8.75+7.50 | | 6(6x-22)=336 | | n-36=48 | | 9x-34=4x+26 | | n+5/−16=−1 | | 2x+5=3×-7 | | 20h=8.75 | | 5x+2-5+3x=21 | | 3-4x=6x-2 |