If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-4x=255
We move all terms to the left:
4x^2-4x-(255)=0
a = 4; b = -4; c = -255;
Δ = b2-4ac
Δ = -42-4·4·(-255)
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-64}{2*4}=\frac{-60}{8} =-7+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+64}{2*4}=\frac{68}{8} =8+1/2 $
| 3(4x6)=78 | | x+13+16=3x+1 | | -4x+13x+10=1 | | 0.25(60)+0.10x=0.15+(60+x) | | -4p=68 | | 3x-4(3x+2)=5x+2-6x+10 | | 2(4x-3)-19=8x-4 | | -4=-4y+8 | | -15n-7n+4n=16 | | 6s-16s=60 | | 12w-6w-2w+5w=18 | | 20x+30=26x | | -7x+56=(7 | | 9+9n-11+3n=22 | | 19+(x+8)=3x+9 | | ((b+1))/3=2 | | x+(x+20)+2x=180 | | 12s+21-3-3=10 | | 2/3•y-24=y/6-6 | | 7+2(x-1)=-7 | | 5x+17x=198 | | 5x=26-4(3x-19) | | p/2+77=78 | | 5x+3+3x+32=180 | | 4(2x)-5=5x+4 | | 1/3(6a+12)=12 | | 5x-3+2x-2x=+12 | | -21=-7/5u | | -4x=3; | | 7n+2(2n+7=91 | | 12p-12p+3p=18 | | 89=4x+7(x-3) |