4x2-4x-5=2x(x+3)-1

Simple and best practice solution for 4x2-4x-5=2x(x+3)-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x2-4x-5=2x(x+3)-1 equation:



4x^2-4x-5=2x(x+3)-1
We move all terms to the left:
4x^2-4x-5-(2x(x+3)-1)=0
We calculate terms in parentheses: -(2x(x+3)-1), so:
2x(x+3)-1
We multiply parentheses
2x^2+6x-1
Back to the equation:
-(2x^2+6x-1)
We get rid of parentheses
4x^2-2x^2-4x-6x+1-5=0
We add all the numbers together, and all the variables
2x^2-10x-4=0
a = 2; b = -10; c = -4;
Δ = b2-4ac
Δ = -102-4·2·(-4)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{33}}{2*2}=\frac{10-2\sqrt{33}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{33}}{2*2}=\frac{10+2\sqrt{33}}{4} $

See similar equations:

| 7+-2x=1+-5x | | 12x+90=4x+90 | | 4b-4b+2b+3b+2b=14 | | 8x+64=10x+30 | | 5x+4x−68=34−8x. | | 7x+(6x+41)=180 | | -9=c-2 | | 10+(5+4a)-5=95 | | 7x-16=-51 | | x+2+2x+140=180 | | -4-w=15 | | 40+12x=90+4x | | 6-6s=-36 | | 10=(c÷3)-4+(c÷6) | | 11t+4t-15t+3t+2t-5=15 | | 2p+6=24* | | -1/x-1/(-1x+0.5)+10=0 | | 5×3x=28 | | -3|2x-3|-5=5 | | (x+5)^2-12=0 | | 7x−(−1)=32 | | m/8=40 | | x3-4=8 | | –313b=5 | | 7k+4k+2k-4k+1=10 | | 74-4x+10=180 | | 10+b=b+5+5 | | 3x+72x=4x+10 | | -11+b/8=9 | | -3w+1=15 | | 14n-4n-4=16 | | 4x+8+6x-5=3 |

Equations solver categories