If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-2x-9=0
a = 4; b = -2; c = -9;
Δ = b2-4ac
Δ = -22-4·4·(-9)
Δ = 148
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{148}=\sqrt{4*37}=\sqrt{4}*\sqrt{37}=2\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{37}}{2*4}=\frac{2-2\sqrt{37}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{37}}{2*4}=\frac{2+2\sqrt{37}}{8} $
| 12-16x=44 | | x²+5x+6=0/x+3 | | A-8p+4=45 | | -3=g/3-6 | | A-8p-4=45 | | 124=-4(-8n=1) | | 15=0.75x=13=0.50x | | 22=½(x+7) | | -2x=12x | | 4(b–12)=96 | | 0y+6=1 | | 2x+10+78=5x-9 | | 7,569=x^2 | | 8n=33 | | 3N+7+10=5n-9 | | 20+3t=44 | | -0.375(x-24)+x=19 | | 12+1/2n=n | | 56/x+5=12 | | v/3+3=11 | | 6t-16+4t=10 | | -11=5y=4 | | 8y+1/7=9y+3/7 | | 4(x+10)+x=3(x+5)-4 | | 3z-5=-2 | | 28-4x=27-3x | | 4(2x^2-4)=3(x^2-8) | | 60-5x=120-45x | | v/3+-5=-8 | | b^2-3=67 | | -3(4b-10)=(1)/(2)(-24b+60) | | 20+2q=68 |