If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-26x+20=0
a = 4; b = -26; c = +20;
Δ = b2-4ac
Δ = -262-4·4·20
Δ = 356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{356}=\sqrt{4*89}=\sqrt{4}*\sqrt{89}=2\sqrt{89}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{89}}{2*4}=\frac{26-2\sqrt{89}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{89}}{2*4}=\frac{26+2\sqrt{89}}{8} $
| 6m2-30m=0 | | F(x)=x/39 | | X=6x-23=3x-8 | | -1=20-x | | (3x-14)=26 | | 2y−3=4y−8 | | 2x-5+70+x=180 | | x+95+95=180 | | -29=-25-n | | 3/2(x-2)5=19 | | -2/3d=6 | | 3/2(x2)5=19 | | x+2/12=2x/8 | | (11-2x)(8-2x)=54 | | 30+a=2 | | 3/2(x2)05=19 | | 4x+7=3x+907 | | 6-r=23 | | 7c+5=5c+19 | | 5j+5=4j+7 | | 4x²=1600 | | 4x²=1600. | | 16x-30=9x-19 | | -5+10=20,m= | | 4d−7=5d−15 | | 7-8b=4b-17 | | v=1+7/26 | | -16=-25-v | | 395+20.50x=907.50 | | -41=n-30 | | 29-26v=-4 | | (15x-40)/(-5)+2=4-2(x-3) |