If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-24x-13=0
a = 4; b = -24; c = -13;
Δ = b2-4ac
Δ = -242-4·4·(-13)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-28}{2*4}=\frac{-4}{8} =-1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+28}{2*4}=\frac{52}{8} =6+1/2 $
| {4x-51}{7}=3x | | 7(n+2)-3=25–(3n+4) | | 17-11x=14-7x | | 60(x-5)+35=120 | | 6(v-7)-8v=-34 | | 15-7x=5-3x | | 4x+6=1-3x | | 6-3x=2x+26 | | 28+2n=5(1-7n) | | 136=12x+28 | | x×-13=-12 | | 0,3x-0,1=0,5 | | 10x-35=9-9x | | 6y-29=145 | | 91=3y-23 | | 29-11x=x-7 | | -(x-2)+3(x+1)+2=0 | | 5x-14=191 | | 30x+120=-30 | | (5)^2x+1/25=125 | | ⅓x+10=2x | | ⅓x(+10=2x | | 5.5x^2=352 | | 1/3(12p-6)-2p+12=30 | | 5c+8/2=24 | | 78=7x+36 | | 3(2x-5)=5(4+x | | 32+2x=4x+27 | | 14y+19=96 | | 4t^2-4t+35=0 | | 8x+22=174 | | 8/27*1/x=729/16 |