If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-24x+20=0
a = 4; b = -24; c = +20;
Δ = b2-4ac
Δ = -242-4·4·20
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-16}{2*4}=\frac{8}{8} =1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+16}{2*4}=\frac{40}{8} =5 $
| 2 = f–43 | | k/12+3-2k=-3 | | 13x-13+2+9=180 | | 12=6/4x | | x^2+4x+3x+12=x^2+2x+x+2 | | 13=j/2+10 | | 17^-7x=11^x+9 | | 0=4-2(x-5) | | 2y2+2y-24=0 | | y=5=12 | | -1/4+20.5f=12.9 | | 5x-4=5(x-4) | | 13-n/9=5 | | F(x)=4-2(x-5) | | 5(3x-4)-11=4+3x | | x^2+4x+4x+12=x^2+2x+x+2 | | -8/3m=9 | | 14-2m=8 | | (-13)=6+r | | 3x-2=x+13 | | m2-11m-12=0 | | v/4=17/3 | | 12^-7x=5^-x+4 | | 143p+220=-4.001 | | (6)(28/12)=x | | (6)(18/12)=x | | +1=3x-20 | | (6)(4/12)=x | | 12(6y+4)=24 | | n/7-3=3 | | 6x-6-5x=1 | | 8k-4=2 |