If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-20x=0
a = 4; b = -20; c = 0;
Δ = b2-4ac
Δ = -202-4·4·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20}{2*4}=\frac{0}{8} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20}{2*4}=\frac{40}{8} =5 $
| 20x+2=4x+20 | | 3x-4(-1)=11 | | 8x+6=9x+5 | | 8p/2-10=90 | | 15x+2=4x+15 | | 2(x-10=-12 | | 10x+2=4x+10 | | 3y^2=10y-32 | | -34-(-5)-(5-32)=14-x | | 22x+2=4x+22 | | (9x+4)+68=180 | | 22x+2=4x+24 | | 22x+2=4x+99 | | 56t-78=8 | | 10-2(2-2b)=2(1-b) | | 2(8x+4)=6x-12 | | 3x^+27x+60=0 | | 5x+4÷2=7 | | 4-2y+y=15 | | 1=x2=(3x+30) | | k/4+6k=4 | | -4b-8=16 | | -6*8=z | | x^+3x-18=0 | | 10x-11=7(x+1) | | 96+22+h=180 | | -4(a-8)=16 | | 9.47=r+8.3 | | 9(x=1)=25=x | | 7x-1/4-1/7(2x-1-x÷2)=4 | | 9(x+1)=25=x | | X+21=5x+24 |