If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-19x-30=0
a = 4; b = -19; c = -30;
Δ = b2-4ac
Δ = -192-4·4·(-30)
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-29}{2*4}=\frac{-10}{8} =-1+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+29}{2*4}=\frac{48}{8} =6 $
| 4^x*2^(x+1)=70 | | 4a=a+42 | | 2/x=8/15 | | 10x+9=10x-10 | | 5x-11=-114x | | 2x=18+24=3x+6 | | 5+7+2k-3k=-8 | | 7x+9+4x=6x-3 | | 15x2-11x+2=0 | | ∠A=10x+24∠B=6x+72∘ | | 2a²-a-21=0 | | 1(5x+1)-2x=4(3x+1) | | 4x+8=2x+6x-10 | | -35x-10-2x=-2 | | 9+w=-3 | | 3x2-4x-20=0 | | (a+3)^2-14(a+3)+45=0 | | 1(1x+5)=4(1x+3) | | 8b+8+2b=2b+16 | | 1x+28+-6x+-23x=180 | | 1(x+5)=4(x+3) | | x^2+22x+109=0 | | -3=(-1/4)x+(1/4) | | 9x2+12x-32=0 | | -x/4-5=-1 | | 15/z=6/8 | | 12x-6x+4=3x-1 | | 13=1/4x+8 | | y3=118 | | 2x=-9x-1 | | 60x+29x+1+90=180 | | 10x+5=-6x-35 |