If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-18x-10=0
a = 4; b = -18; c = -10;
Δ = b2-4ac
Δ = -182-4·4·(-10)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-22}{2*4}=\frac{-4}{8} =-1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+22}{2*4}=\frac{40}{8} =5 $
| X²+11x=-5 | | 2(2x+6)=2(x-5) | | 2(x-5)=2-4x | | 3x+20=x-30 | | (y-1)+3(y-1)=4+2y | | 3y+8=6+y | | -23y=-7 | | 6.5d+10=-3 | | x*4-13=131 | | 3(2x+3)=(4x+13) | | -60=5y-25y | | 21/3x=7 | | 5x-50+3x+30=180 | | 11/2-w=3/4 | | 11/2-w=3/4= | | (x+4)*5=-2 | | z-5/13=6/7= | | 1-x-1=3-x+2 | | -2x+5-(x-1)(x+2)=0 | | -72.12=6(3d+10) | | 2.74=1.61+x | | (D^4+6D^2+9)y=0 | | 7x–1=2x–4 | | v-9=45 | | X^2-x-230=0 | | 2y-7/3=9 | | 5x–4=–x+8 | | (x/3)+4=9 | | 3-x-2=0 | | 3+5x=-8 | | 3-x+2=0 | | 1-x-1=0 |