If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-18x+20=0
a = 4; b = -18; c = +20;
Δ = b2-4ac
Δ = -182-4·4·20
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2}{2*4}=\frac{16}{8} =2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2}{2*4}=\frac{20}{8} =2+1/2 $
| (3n-7)=(7n-4) | | Y/5=2x-2 | | 7-3(1-5p)=94 | | 4/3a+6=21 | | 2(8m+-15-4=9m+6-2(m-1)-7m | | 17+x=96 | | -3x+7x-8x=0 | | 90+.20x=70+.70x | | 8g=140 | | 9)342=6(1-7x) | | -3-8(1-2n)=34+7n | | (X-6)=(5x-4) | | 4.5+10x=6.79 | | x-9=163 | | 3(7y-1)=4y+6 | | -40+2n=-4n-64 | | (4x-4)=(8x-5) | | 8x-5=5+6(4x-7) | | 12=1/4(16-x) | | 4(-4x+4)=64 | | -3m+10=7m=20 | | 10(x+3)-(-9x-4)=x | | 3x2–11x+5=0 | | 4m+11=6m-3 | | 7/12t-1/4=5/6 | | 5x-6x=40 | | -132=4(2-7h) | | 550=0.73n+120 | | 130+.2x=50+.40x | | -30-6r=-30 | | 8=d-12/4 | | (3/3^x−2)^2=3√1/9 |