If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-16x=0
a = 4; b = -16; c = 0;
Δ = b2-4ac
Δ = -162-4·4·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16}{2*4}=\frac{0}{8} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16}{2*4}=\frac{32}{8} =4 $
| 167+44+2x+5=180 | | 110–16=10h | | 0.11x=0.2 | | 2*x-4)=3(1+x) | | -6-13r=24 | | (M-)=2m-16 | | 3x+14=4x-29 | | s/5=-6 | | -5=x+(28) | | -16=-4-46n | | v^2-14v+40=0 | | -22=-4r-10 | | 10x+2x^2=61 | | (-2+54)+(9x+13)=90 | | 6+b+3b=18 | | 2n^2+10n-2=406 | | −4(9−3x)=0 | | 5(x-7=6(x+2) | | 2y−3=√3y2−10y+12 | | 7x=(√49)7 | | -3(x-4)-8=6 | | 180-2x=64 | | x-4=0+17 | | 4y=(2y+8) | | 10+2(2x+1)=16 | | -z-3=-10 | | x-4=12(0)+17 | | 2n−1=3 | | -102=6(n-4) | | 2z/8=8 | | 6y+3=90 | | 4+z=10 |