If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-11x-3=0
a = 4; b = -11; c = -3;
Δ = b2-4ac
Δ = -112-4·4·(-3)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-13}{2*4}=\frac{-2}{8} =-1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+13}{2*4}=\frac{24}{8} =3 $
| (9x+26)=180 | | -63=9(n-2) | | (X+129)=(x+69) | | 4x+30=180-8x | | 3(-7+x)=-84 | | 7=3*2y | | +3x+5=6x–11 | | (3p+4)=(5p) | | 4+3p=-11 | | 1.2/3.6=10x | | -9=5(2x+1) | | 200➗n=-10 | | 2(4z-2)=24 | | -5(3m+)=-3(4m-2) | | 4/v-1-8/6=0 | | -105+27=-4p-9p | | 4x−15=17 | | x/7+13=51 | | (3x+17)+(7x-39)=x | | 180=(3x-8)+x | | -3(b-10)+4=4 | | v+48+87=180 | | 4(2x-(x+1)=x+13 | | 4(x-18)/5=16 | | -3v-(-13v)-9v-3=12 | | 60+42.95x=60+49.95 | | 345=25+40x | | -3(u-5)=-9 | | x+62+65=180 | | 31x+18=x | | 2x4 = 64 | | ¾x=9 |