If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+x=0
a = 4; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·4·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*4}=\frac{-2}{8} =-1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*4}=\frac{0}{8} =0 $
| 6w=35+w | | -2x=1/2+5 | | 6x-29=73 | | 3/4x=16+-18 | | 10=60+3x | | Y=400x^2 | | x^2=x*2 | | 8x-67+9x-75=90 | | 2y^2-4y-4=0 | | -10w–-18w+5w–5=8 | | 2x+9-15x=14-15x+12x-5 | | 11x+20-11-7x=5x | | 0.15x+0.10(50–x)=0.12(50) | | 2x+64=102 | | -5d=0+10 | | 1/2x+6=35 | | 18x=-3+5(18x=8=18(6) | | 2x+31=96 | | 2x+68=96 | | 8m=$34.16 | | 2/3=38/m+50 | | 3x+2=35+2=37 | | 16=(x+7)/(x-8) | | -1t+6=0 | | 2x+58=98 | | 2x^2-7x-459=0 | | 15x-10=6x-(x+2)+(-x+3)= | | 10+xx=6 | | 6x2-12x=0 | | 18+5x=10x-22 | | (7x+13)=132 | | 9y^2-y-5=0 |